Content-oriented Networking Platform in Future Internet

Presented by
Junho Suh (jhsuh@mmalb.snu.ac.kr)

Multimedia & Mobile Communication Lab, Seoul National University
Contents

• Introduction
 – Move to content-oriented network
• Content-oriented Networking Platform
 – Communication Procedure
 – Major three components
• Conclusion
Introduction

• Move to Content-oriented Network
 – Internet traffic is already content-oriented
 • CDN, multimedia, P2P...

 – Users/applications care “what to receive”
 • They don’t care “from whom”
 • Host based communication model is outdated
Challenges

• IP networking
 – Lookup-by-name
 • Indirection (from name to locator)
 – DNS
 • Host/link availability concern
 • Locators can be aggregated
 – Concerning routing scalability

• Content networking
 – Route-by-name
 • No indirection, better availability
 • Content name (CID) is a routing entry
 • Huge scalability issue
 – CID is flat
Content networking under IP network

• Motivation
 – Current IP networking leverages network prefixes in routing
 • Routing scalability is not bad
 – Content ID is not good for routing
 • Huge scaling burden

• Content routing and IP routing should be combined

• We propose a grassroots approach
 – Some popular contents will be cached
 – Routing info. for those contents can be propagated in local and best-effort manner
Content-oriented networking platform

• Objectives
 – Exploit content networking to adopt current Internet

• Environments
 – Content-aware Agent
 • Interact content based network and IP network
 – Content-aware Router
 • Efficient content delivery mechanism
 – Content directory service
 • Mapping/Resolution content to location

• Achievements
 – Security, accountability, deployment
General Architecture

- **Content based Communication**
- **IP based Communication**
- **Content Distribution**

- **Agent**
- **Gateway A**
- **Gateway B**
- **Publisher**

- Req. particular contents
- Rep. Here you are

- Agent’s IP address

- DNS
- CDS

- Content based System (CDS)
- Content-Aware Agent (CAA)
- Content-Aware Router (CAR)

AsiaFI2010@Keio Univ.
Communication Procedure

Content req. with URI → FQDN → Relay the req. to publisher’s CAA → Relay the requested contents → Cache contents → Rep. contents

Content-Aware Agent (CAA) → Content-Aware Router (CAR) → CAA

Find contents → Rep. the contents → Cache contents
Content-Aware Agent (CAA)

- Proxy for interaction CON to IP network
 - Handle content requests / response
 - FQDN to obtain IP address for publisher’s CAA
 - Authority content server’s CAA
 - Caching the requested contents

- Gateway for heterogeneous networks
 - Protocol translate or Tunneling
 - Relay contents in inter-domain environment
Content network domain

- IP-less communication
- Assumption
 - Lookup "Content ID (CID)" by web search
 - CID
 - URI form
 - http://youtube.com/south-afreeca-worldcup-2010
- Communication inside domain
 - Request packets are relayed CAA by MAC protocol
 - CAA contacts DNS
 - Solicitors cannot contact server directly

1: I want a particular content (e.g. HTTP URI)
2: Here you are
Content-Aware Router (CAR)

- Legacy routers look at IP address in transit header
- CARs also look at CID in global header
- CARs can participate in content relaying
 - CARs can cache contents
CANA operations: Content Request Message

1. H1 sends a content request message to A1, its src:dst is H1:A1 (the content \(C_{H2} \) belongs to H2)
2. A1 makes a CIB entry \((C_{H2}, H1)\) to deliver content data
3. The content request message now has A1:A2 as src:dst IP addresses
4. C1 makes a CIB entry \((C_{H2}, A1)\) to deliver content data

• As content request message traverses, a content info base (CIB) entry is set up backwards to relay content data
Publisher’s domain

- Registers its domain name with the DNS
 - Agent’s IP address (of the egress link)

- Content distribution with other publisher’s domain
 - Maintain contents distributed information
 - By Content Directory System
Contents dissemination

• Content dissemination
 – Contents are distributed at whole network to achieve efficient content delivery
 – Distributed information need to maintained

• Content Resolution Service
 – It is hard to implementation
 • Contents are not identified by hierarchical manner
 – Content ID is flat
 • DNS is not adequate for contents resolution
Content Directory System (CDS)

• Assumptions
 – Contents Directory System is provided only for authority domain
 • CDS is located at the publisher’s domain
 – Contents distribution is performed by authority publisher’s domain administrator
 • Do not concerned others contents, such as P2P distributed or routing cached contents

• CDS
 – Mapping authorized contents to publisher’s address
 – Make CID extension attached attributes
 • CID can be maintained by hierarchical manner
Communication procedure with CDS

- **FQCN** – obtain Authority domain or location
- **Req. particular contents**
- **Relay request**
- **Make connections**
- **/twyou.co.kr/xxx** – xxx’s authority domain location
- xxx’s attributes
- xxx | type | codec | …
Conclusion

• We propose a grassroots approach
• Content-oriented Networking Platform
 – Content-Aware Agent (CAA)
 – Content-Aware Router (CAR)
 – Content Directory System (CDS)
• Future works
 – Content-Aware Routing
 – Content Directory System